在含碳化鈦(TiG)的硬質(zhì)合金中加入一定量的碳化鉭(TaC),不僅能提高常溫時的強(qiáng)度(每增加4~6%的TiC含量,可增加強(qiáng)度12~18%)。供應(yīng)氮碳化鈦廠家更重要的是能提高硬質(zhì)合金在1200℃時的抗彎強(qiáng)度,提高刀具和工件材料發(fā)生粘結(jié)的溫度,降低切削過程中硬質(zhì)合金碳元素向工件材料(鋼)擴(kuò)散的深度,從而降低刀具的擴(kuò)散磨損,提高刀具耐用度。此外,含TaC的硬質(zhì)合金的可焊性好,刃磨時不易產(chǎn)生裂紋,提高了硬質(zhì)合金的使用性能。氮碳化鈦銑削用硬質(zhì)合金刀片應(yīng)含有較多的碳化鉭,使刀尖強(qiáng)度高,對斷續(xù)切削時的沖擊和溫度變化有較好的適應(yīng)性。
氮碳化鈦涂層有優(yōu)良的力學(xué)及摩擦學(xué)性能,作為硬質(zhì)耐磨涂層,它已廣泛用于切削刀具、鉆頭和模具等場合,具有廣泛的應(yīng)用前景.研究表明。氮碳化鈦氮碳化鈦涂層的結(jié)構(gòu)、性能和結(jié)合強(qiáng)度受化學(xué)組分及工藝參數(shù)等因素的影響.從影響氮碳化鈦涂層結(jié)構(gòu)、性能、殘余應(yīng)力和結(jié)合強(qiáng)度的因素出發(fā)。氮碳化鈦廠家綜述了90年代以來的研究成果,為合理地利用和進(jìn)一步改善氮碳化鈦涂層的性能提供參考,提出了進(jìn)一步的工作.
化學(xué)特性:陶瓷材料在高溫下不易氧化,并對酸、堿、鹽具有良好的抗腐蝕能力。氮碳化鈦光學(xué)特性:陶瓷材料還有獨(dú)特的光學(xué)性能,可用作固體激光器材料、光導(dǎo)纖維材料、光儲存器等,透明陶瓷可用于高壓鈉燈管等。供應(yīng)氮碳化鈦廠家磁性陶瓷(鐵氧體如:MgFe2O4、CuFe2O4、Fe3O4)在錄音磁帶、唱片、變壓器鐵芯、大型計(jì)算機(jī)記憶元件方面的應(yīng)用有著廣泛的前途。
金屬鉻粉碳化法:將炭黑按13.5%~64%在(質(zhì)量)的比例(比理論結(jié)合碳量11.33%還多)與用電解鉻粉碎而成325目的金屬鉻粉末,用球磨機(jī)進(jìn)行干式混合之后作為原料。氮碳化鈦添加1%~3%硬脂酸作為成型用潤滑劑。供應(yīng)氮碳化鈦用1 T/cm2以上壓力加壓成型。將該加壓成型粉末放進(jìn)石墨盤里或坩堝里,用塔曼爐或感應(yīng)加熱爐,在氫氣流(氫氣露點(diǎn)在-35℃左右)中,加熱至1500~1700℃,并保持1h,使鉻進(jìn)行碳化反應(yīng),生成碳化鉻,經(jīng)冷卻,制得碳化鉻。
粉末粒度及其分布的測定方法很多,一般用篩分析法(>44μm)、沉降分析法(0.5~100μm)、氣體透過法、顯微鏡法等。超細(xì)粉末(<0.5μm)用電子顯微鏡和 X射線小角度散射法測定。氮碳化鈦金屬粉末習(xí)慣上分為粗粉、中等粉、細(xì)粉、微細(xì)粉和超細(xì)粉五個等級。通常按轉(zhuǎn)變的作用原理分為機(jī)械法和物理化學(xué)法兩類,既可從固、液、氣態(tài)金屬直接細(xì)化獲得,又可從其不同狀態(tài)下的金屬化合物經(jīng)還原、熱解、電解而轉(zhuǎn)變制取。難熔金屬的碳化物、氮化物、硼化物、硅化物一般可直接用化合或還原-化合方法制取。氮碳化鈦廠家因制取方法不同,同一種粉末的形狀、結(jié)構(gòu)和粒度等特性常常差別很大。
碳化鉻(Cr3C2)為灰色粉末,有金屬光澤;氮碳化鈦斜方晶系;密度為6.68g/cm3;熔點(diǎn)為1890℃,沸點(diǎn)為3800℃;在高溫環(huán)境下(1000~1100℃)具有良好的耐磨、耐腐蝕、抗氧化性能。供應(yīng)氮碳化鈦廠家屬于一種金屬陶瓷。碳化鉻的貯存方法:貯存于陰涼、通風(fēng)、干燥的庫房內(nèi),密封保存。