相比于現(xiàn)有單純采用機(jī)械混合的方法添加WC、Mo2C,實(shí)驗(yàn)組通過(guò)物理包覆的方式實(shí)現(xiàn)了在Ti(C,N)顆粒的表面覆蓋一層WC、Mo2C,因此,在燒結(jié)過(guò)程中,Ti(C,N)與WC、Mo2C的界面形成較完整的(Ti,W,Mo)(C,N)環(huán)形化合物,(Ti,W,Mo)(C,N)在粘接相金屬中溶解占位從而阻礙Ti(C,N)中的Ti、N、C原子的擴(kuò)散,有效抑制Ti、N、C原子在粘接相中的溶解和析出。供應(yīng)金屬陶瓷原料降低了氮碳化鈦在粘接相中的溶解度,減少氮碳化鈦在粘接相中溶解析出再長(zhǎng)大導(dǎo)致的N分解。金屬陶瓷原料增強(qiáng)氮碳化鈦的穩(wěn)定性,使氮碳化鈦晶粒細(xì)化,提高金屬陶瓷的硬度和強(qiáng)韌性。
制備生長(zhǎng)氮化鋁單晶所用碳化鉭坩堝,包括:高純碳化鉭粉、粘結(jié)劑、包套模具、液體壓力介質(zhì)、密閉高壓容器、坩堝、車床及高溫加熱爐。金屬陶瓷原料將高純碳化鉭粉與粘結(jié)劑混合均勻后烘干,裝入包套模具材料中;再裝入倒?jié)M液體壓力介質(zhì)的密閉高壓容器中進(jìn)行高壓壓制成碳化鉭坩堝模型;放入坩堝內(nèi),再放在高溫加熱爐里進(jìn)行高溫?zé)Y(jié);利用車床對(duì)其進(jìn)行車削加工,得到合適大小的碳化鉭坩堝;再經(jīng)過(guò)高溫加熱爐高溫定型,得到生長(zhǎng)氮化鋁單晶所用的碳化鉭坩堝。供應(yīng)金屬陶瓷原料本發(fā)明能夠延長(zhǎng)碳化鉭坩堝使用壽命,提升其生長(zhǎng)氮化鋁單晶的晶體質(zhì)量,增加單晶可用面積;且方法簡(jiǎn)單,可實(shí)現(xiàn)低成本氮化鋁單晶的制備。
氮碳化鈦涂層有優(yōu)良的力學(xué)及摩擦學(xué)性能,作為硬質(zhì)耐磨涂層,它已廣泛用于切削刀具、鉆頭和模具等場(chǎng)合,具有廣泛的應(yīng)用前景。金屬陶瓷原料研究表明,氮碳化鈦涂層的結(jié)構(gòu)、性能和結(jié)合強(qiáng)度受化學(xué)組分及工藝參數(shù)等因素的影響。金屬陶瓷原料廠家從影響氮碳化鈦涂層結(jié)構(gòu)、性能、殘余應(yīng)力和結(jié)合強(qiáng)度的因素出發(fā),綜述了90年代以來(lái)的研究成果,為合理地利用和進(jìn)一步改善氮碳化鈦涂層的性能提供參考,提出了進(jìn)一步的工作。
碳化鉭屬于黑色或暗棕色金屬狀粉末,立方晶系,質(zhì)堅(jiān)硬。相對(duì)密度13.9,熔點(diǎn)3880℃,沸點(diǎn)5500℃。含有75%碳化鉭與25%碳化鉿的混和物,具有4200℃以上的熔點(diǎn)。化學(xué)性質(zhì)極為穩(wěn)定。金屬陶瓷原料不溶于水,微溶于硫酸和氫氟酸,溶于氫氟酸和硝酸的混合溶液。由五氯化鉭與甲烷為反應(yīng)氣,用氬作載體,用碳化硅電阻從外部輻射加熱、碳化或五氧化鉭與炭黑混和,加壓粉末成型,在氫氣或真空中加熱而制得。長(zhǎng)沙金屬陶瓷原料用于制造切削工具。
熱特性:陶瓷材料一般具有高的熔點(diǎn)(大多在2000℃以上),且在高溫下具有極好的化學(xué)穩(wěn)定性;陶瓷的導(dǎo)熱性低于金屬材料,陶瓷還是良好的隔熱材料。金屬陶瓷原料同時(shí)陶瓷的線膨脹系數(shù)比金屬低,當(dāng)溫度發(fā)生變化時(shí),陶瓷具有良好的尺寸穩(wěn)定性。電特性:大多數(shù)陶瓷具有良好的電絕緣性,因此大量用于制作各種電壓(1kV~110kV)的絕緣器件。金屬陶瓷原料廠家鐵電陶瓷(鈦酸鋇BaTiO3)具有較高的介電常數(shù),可用于制作電容器,鐵電陶瓷在外電場(chǎng)的作用下,還能改變形狀,將電能轉(zhuǎn)換為機(jī)械能(具有壓電材料的特性),可用作擴(kuò)音機(jī)、電唱機(jī)、超聲波儀、聲納、醫(yī)療用聲譜儀等。少數(shù)陶瓷還具有半導(dǎo)體的特性,可作整流器。