碳化鉭(TaC)陶瓷顆粒具有高熔點(diǎn)(3880℃)、高硬度(2100HV0.05)、化學(xué)穩(wěn)定性好、導(dǎo)電導(dǎo)熱能力強(qiáng)等優(yōu)點(diǎn),但由于其成本等問題,目前所見報道僅限于鎳基、鋁基等基體。金屬粉末Chao等利用激光熔覆技術(shù),制備出了鎳基增強(qiáng)碳化鉭表面復(fù)合材料,結(jié)果表明此材料與純鎳相比硬度顯著提高。供應(yīng)金屬粉末 磨損率比硬化鋼明顯降低。
金屬陶瓷刀具材料具有高硬度、高強(qiáng)度、優(yōu)良的高溫和耐磨性能、良好的韌性、密度小、紅硬性高、高溫抗氧化性好等一系列優(yōu)點(diǎn)。金屬粉末滿足汽車、摩托車制造業(yè)、模具加工業(yè)、軸承加工業(yè)、航空航天業(yè)、機(jī)床業(yè)、工程機(jī)械、石墨電極、3C電子行業(yè)配套等行業(yè)市場的需求,并能打破國外企業(yè)的市場壟斷地位。供應(yīng)金屬粉末同時,以Ti(C,N)替代戰(zhàn)略稀缺資源鈷、鎢類材料,也有利于國家的戰(zhàn)略安全和資源儲備。
化學(xué)特性:陶瓷材料在高溫下不易氧化,并對酸、堿、鹽具有良好的抗腐蝕能力。金屬粉末光學(xué)特性:陶瓷材料還有獨(dú)特的光學(xué)性能,可用作固體激光器材料、光導(dǎo)纖維材料、光儲存器等,透明陶瓷可用于高壓鈉燈管等。供應(yīng)金屬粉末廠家磁性陶瓷(鐵氧體如:MgFe2O4、CuFe2O4、Fe3O4)在錄音磁帶、唱片、變壓器鐵芯、大型計算機(jī)記憶元件方面的應(yīng)用有著廣泛的前途。
相比于現(xiàn)有單純采用機(jī)械混合的方法添加WC、Mo2C,實(shí)驗(yàn)組通過物理包覆的方式實(shí)現(xiàn)了在Ti(C,N)顆粒的表面覆蓋一層WC、Mo2C,因此,在燒結(jié)過程中,Ti(C,N)與WC、Mo2C的界面形成較完整的(Ti,W,Mo)(C,N)環(huán)形化合物,(Ti,W,Mo)(C,N)在粘接相金屬中溶解占位從而阻礙Ti(C,N)中的Ti、N、C原子的擴(kuò)散,有效抑制Ti、N、C原子在粘接相中的溶解和析出。供應(yīng)金屬粉末降低了氮碳化鈦在粘接相中的溶解度,減少氮碳化鈦在粘接相中溶解析出再長大導(dǎo)致的N分解。金屬粉末增強(qiáng)氮碳化鈦的穩(wěn)定性,使氮碳化鈦晶粒細(xì)化,提高金屬陶瓷的硬度和強(qiáng)韌性。
一種成本低、燒結(jié)活性好的碳化鉭粉體的反應(yīng)合成方法。金屬粉末其技術(shù)方案為:采用酚醛樹脂形成的高活性碳為碳源還原氧化鉭粉體制備碳化鉭粉體,包括以下步驟:①原料制備:第一步:將0.1~3μm的氧化鉭粉體與酚醛樹脂以重量比為5∶0.5~1的比例在混碾機(jī)中混合均勻,在80~100℃的溫度下固化,然后在制粉機(jī)中粉碎制成平均粒徑為10~20μm的原料粉1。供應(yīng)金屬粉末第二步:將上述原料粉1與酚醛樹脂以重量比為5∶1~2的比例在混碾機(jī)中混合均勻,在50~100℃的溫度下固化,然后在制粉機(jī)中粉碎制成平均粒徑為20~50μm原料粉2。
TiCN 具有比 TiN 更低的摩擦系數(shù)和更高的硬度 , 鍍了氮碳化鈦的工具更加適合于切割如不銹鋼 。金屬粉末廠家 鈦合金和鎳合金等堅硬材料,更具耐磨性和高溫穩(wěn)定性,可顯著提高刀具的壽命。 性質(zhì):深灰色粉末。金屬粉末具有較低的內(nèi)應(yīng)力,較高的韌性,良好的潤滑性,以及高硬度、耐磨損等特性,適用于要求較低的摩擦系數(shù)及較高硬度的場合。